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Abstract. This pap erpr esentsa study on the dynamics of the rattling problem in ge ar

boxes under non-ideal excitation. The subject has been analyzed by a number of authors,

such as Karagiannis and Pfei�er (1991), for the ideal excitation case. An interesting

model of this same pr oblemby Moon (1992) has been recentlyused by Souza and Caldas

(1999) to detect chaotic behavior. We consider two spur gears with di�erent diameters

and gaps between the teeth. Suppose the motion of one ge arto be given while the motion

of the other is governed by its dynamics. In the ide al case, the driving wheel is sup-

pose dto undergo a sinusoidal motion with given constant amplitude and frequency. In

this paper, we consider this motion to be a function of the system response and a limited

energy source is adopted. Thus, an extra degree of freedom is introduced in the pr ob-

lem. The equations of motion are obtained via a Lagrangian approach with some assumed

characteristic tor quecurves. Next, extensive numerical integration is used to detect some

interesting geometrical aspects of regular and irregular motions of the system response.
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1. INTRODUCTION

Rattling in change-ov er gears of automobiles in an unwanted comfort problem. It is

excited b y the torsional vibrations of the drive train system at the entrance of the gear

box, where these torsional vibrations themselves are generated b y imbalances of the en-

gine. All gear-wheels not under load rattle due to backlashes in the meshes of the gears.

In recent y ears, general models hav e been developed to analyze these rattling phe-

nomena, mainly with the goal to �nd some means to reduce them by parameter variation.

They are founded on an procedure based on impact theory. The rattling vibrations pos-



sess typical non linear behavior leading to periodic and chaotic regimes. The subject has

been analyzed by a number of authors, such as Karagiannis and Pfei�er (1991), for the

ideal excitation case. An interesting model of this same problem by Moon (1992) has

been recently used by Souza and Caldas (1999) to detect chaotic behavior.

We con�ne our considerations to single stage rattling. We consider two spur gears

with di�erent diameters and gaps between the teeth. Suppose the motion of one gear to

be given while the motion of the other is governed by its dynamics. In the ideal case, the

driving wheel is supposed to undergo a sinusoidal motion with given constant amplitude

and frequency. In this paper, we consider this motion to be a function of the system

response and a limited energy source is adopted. Thus, an extra degree of freedom is in-

troduced in the problem. The equations of motion are obtained via a Lagrangian approach

with some assumed characteristic torque curves. Next, extensive numerical integration is

used to detect some interesting geometrical aspects of regular and irregular motions of

the system response.

2. MATHEMATICAL MODEL

Our model is presented in Fig. 1. We consider a cart of mass M connected to a

inertial reference frame by a spring k (whose sti�ness has a linear part k1 and a non

linear part k2) and a linear viscous damper c. Its displacement is denoted by x. In the

upper part of the cart, a d wide gap is carved. Within the boundaries of this gap a point

mass m2 (whose displacement is denoted by S) is free to move and eventually impact

against them. The motion of the cart is induced by an in-board non-ideal motor driving

an unbalanced rotor, whose angular displacement is ' and whose moment of inertia is J .

This situation is modeled by a small point mass m1 at a r eccentricity.

Figure 1: The mathematical model

We now derive the equations of motion of the cart via Lagrange's equations:
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where Y is the Lagrangian function comprising the total potential energy and the kinetic

energy. The active and resisting torques are L( _') and D( _'), respectively, functions of the

angular speed of the motor.

The total potential energy is:
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The kinetic energy is:
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Thus, we obtain the following equations of motion for the cart:
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where:

x1 = x; x2 = _x; x3 = '; x4 = _'

2�� =
cq

k1(M +m1)
; � =

s
k1

M +m1

t

�� =
k2

k1
r2; � =

m1

M +m1

; L = E1 exp(E2x4)

�G =
L+D

J +m1r2

�
M +m1

k1

�
; D = x4

where E1 and E2 are constants of the motor.

These equations will render movable boundaries to the motion of the point mass m2.

The motion of this point mass is simply given by the solution of the homogeneous equation

�S = 0 (5)



with initial conditions given by each impact with the movable boundaries.

In the next section, motions of both cart and free point mass are obtained via nu-

merical integration.

3. NUMERICAL SIMULATIONS

First, a parameter study of the e�ect of the motor constant E1 upon the motion of

the cart is performed. Results displayed in Figures 2 and 3 show that this parameter will

e�ect both the frequency and the amplitude of that motion.
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Figure 2: Frequency versus the motor parameter E1.
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Figure 3: Amplitude versus the motor parameter E1.

The motion of the cart imply movable boundaries to the displacement of the point

mass that is free to move inside the gap. It is interesting to see that in Figures 4 and 5



where heavy lines represent the position of the boundaries of the gap at each time � and

the thin lines the position of the free point mass. Figure 4 prompts a condition of regular

motions while Fig. 5 depicts one of chaotic motions.
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Figure 4: Periodic impact motion.
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Figure 5: Chaotic impact motion.

For a better understanding of the phenomenon, a bifurcation diagram is prompted

in Fig. 6, showing the speed _S of the point mass in the moment just before the impact

against the movable boundaries as function of the motor parameter E1.
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Figure 6: Bifurcation diagram of the velocity _S versus the motor parameter E1.

4. COMMENTS ON THE RESULTS

A simple mathematical model of the gear rattling phenomenon is proposed allowing

for consideration of limited energy sources such as those liable to occur in practice.

Our investigations con�rm that a rich bifurcation structure and chaotic behavior is

present in the adopted model. This could be of interest as a possible explanation of the

undesirable rattling observed in practical gear boxes.
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